
Chapter 4

Divisibility

4.1 The division algorithm

For the next few lectures we will exercise our ability to prove mathematical state-
ments, using the fertile ground of number theory. In the process we will learn new
proof techniques and tricks of trade. The number-theoretic concepts and results
we will cover will be useful throughout your computer science studies, and, indeed,
throughout your involvement with mathematics.

The following result is commonly known as the division algorithm, even though it
is not an algorithm at all.

Theorem 4.1.1. If a and b are integers and b 6= 0, then there is a unique pair of
integers q and r, such that a = qb + r and 0 ≤ r < |b|.

Proof. We need to prove two things: that there is some such pair q, r (existence) and
that this pair is unique (uniqueness).

Let’s begin with existence. First we show that there is a pair q, r ∈ Z that satisfies
a = qb + r for some r ≥ 0. This is easy after some playing around: Take q = −|ab|/b
and r = a + |ab|. Since |b| ≥ 1, it holds that r ≥ 0. Now we need to show that such
q, r ∈ Z exist with r in addition being smaller than |b|. For this, consider the set
S of all r ∈ N that satisfy a = qb + r for some q ∈ Z. We’ve just shown that S is
nonempty, so it must have a smallest element, call it r0. We have a = q0b + r0. If
r0 < |b| we’re done. Otherwise, we have a = (q0b + |b|) + (r0 − |b|), which means that
r0 − |b| is a smaller element of S than r0, leading to a contradiction. This completes
the existence proof.

To prove uniqueness, suppose that a = qb + r = sb + t, with 0 ≤ r, t < |b|. Thus
(q − s)b + (r− t) = 0. Since 0 ≤ r, t < |b|, we have |r− t| < |b|, hence |(q − s)b| < |b|
and |q − s| < 1. Since q and s are integers, this implies q = s. From this we have
r = t and the uniqueness proof is complete.

Proof tip: When we need to prove that some mathematical object exists and is
unique, it is useful to approach in two stages. First prove that at least one such object
exists. This can be done either by directly constructing an object and demonstrating
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that it fulfills the requirements, or by assuming that no such object exists and reaching
a contradiction. Then show that any two such objects must be the same.

The Well-Ordering Principle. In proving the division algorithm, we considered
a certain set S ⊆ N and argued that since it is nonempty, it must have a smallest
element. Why is this true? As with induction, we accept this proposition as an
axiom. In general, the “well-ordering principle” states that any nonempty set of
natural numbers must have a smallest element. As you will prove in the homework,
the well-ordering principle is equivalent to the principles of induction and strong
induction.

4.2 Remainders

A more algorithmic view of Theorem 4.1.1 is as follows: If we divide the equation

a = qb + r

by b we get
a

b
= q +

r

b
.

Since 0 ≤ r < |b|, we get that if b > 0, then 0 ≤ r
b

< 1 and thus q =
⌊

a
b

⌋
, the greatest

integer less than or equal to a
b
. If b < 0, then 0 ≥ r

b
> −1 and thus q =

⌈
a
b

⌉
, the

least integer greater or equal to a
b
. This can be used to calculate q, from which we

can derive r.
In Theorem 4.1.1, we call q the quotient and r the remainder. We use the notation

r = a rem b to denote that r is the remainder when a is divided by b. There is no
need for a special notation for quotient, since we can just use

⌊
a
b

⌋
and

⌈
a
b

⌉
, depending

on the sign of b.

Definition: If a and b are such that a rem b = 0 we say that a is a multiple of b,
or that b divides a (or is a divisor of a). Note that this holds when there exists some
integer q, such that a = qb. In particular, every integer divides 0, and every integer
is a multiple of 1. When b divides a we write b|a, and when b does not divide a we
write b6 |a.

Definition: An integer u is called a linear combination of a set of integers a1, a2, . . . , an

if and only if there exist integer coefficients c1, c2, . . . , cn that satisfy

u =
n∑

i=1

ciai.

Theorem 4.2.1. Properties of divisibility:

(a) If b|a and c|b then c|a.
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(b) If b|a and a 6= 0 then |b| ≤ |a|.

(c) If b divides each of a1, a2, . . . , an, then b divides all linear combinations of
a1, a2, . . . , an.

(d) a|b and b|a if and only if a = ±b.

Proof. We prove the properties in turn:

(a) Since b|a, there exists an integer q, such that a = qb. Similarly, there exists an
integer r, such that b = rc. Thus a = qb = qrc. Since qr is an integer, it holds
that c|a.

(b) Since b|a, there exists an integer q, such that a = qb. This implies |a| = |q| · |b|.
Assume for the sake of contradiction that a 6= 0 but |b| > |a|. Then |q| · |b| < |b|.
Since |b| > |a| > 0, we can divide by |b| to get |q| < 1, implying q = 0. Thus
a = qb = 0, which is a contradiction.

(c) Consider a linear combination u =
∑n

i=1 ciai. Since b|ai, there exists an integer
qi, such that ai = qib, for all 1 ≤ i ≤ n. Thus

u =
n∑

i=1

ciai =
n∑

i=1

ciqib = b ·
n∑

i=1

ciqi.

Since
∑n

i=1 ciqi is an integer, we have b|u.

(d) For the “if” statement, note that if a = ±b then b = qa and a = qb, for q = ±1,
so a|b and b|a. To prove the “only if” statement, assume that a|b and b|a. This
implies the existence of integers q and r, such that b = qa and a = rb. Thus
b = qrb. If b = 0 then a = 0 and the claim that a = ±b holds. Otherwise we
can divide by b to get qr = 1. Note that in this case q, r 6= 0. Part (b) of the
theorem implies that |q| ≤ 1 and |r| ≤ 1. Thus q, r = ±1 and the claim that
a = ±b follows.

Proof tip: Often we need to prove that a proposition A holds if and only if some
other proposition B holds. Such an “if and only if” (sometimes abbreviated as “iff”)
statement is really composed of two implications, each of which needs to be proved.
It is often useful to decouple these and prove them separately. First prove that “If A
then B,” and then prove that “If B then A.” Another strategy is to prove that “If A
then B” and “If not A then not B.”

4.3 Greatest common divisors

If d|a and d|b then d is a common divisor of a and b. For example, 1 is a common
divisor of any pair a, b. If a and b are not both 0 then, by Theorem 4.2.1(b), any
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common divisor of a and b is not greater than max(|a|, |b|). Thus the set of common
divisors of a and b has a largest element, called the greatest common divisor of a and
b, or gcd(a, b). This is the integer d that satisfies the following two criteria:

• d|a and d|b.

• If c|a and c|b then c ≤ d.

Note that when a = b = 0, there is no greatest common divisor, since any integer
divides 0. When a and b are not both 0, we often want to compute gcd(a, b) efficiently.
Note that the set of divisors of a and −a is the same, and similarly for b and −b.
Furthermore, if a = 0 then gcd(a, b) = b, and if a = b then gcd(a, b) = a = b. Thus it
suffices to concentrate on the case a > b > 0, without loss of generality.

Since 1 ≤ gcd(a, b) ≤ b, we can just test all integers between 1 and b and choose
the largest one that divides both a and b. However, there is a much more efficient
way to find greatest common divisors, called Euclid’s algorithm. This algorithm, one
of the earliest in recorded history, is based on the following lemma.

Lemma 4.3.1. If a = qb + r then gcd(a, b) = gcd(b, r).

Proof. By Theorem 4.2.1(c), all common divisors of b and r also divide a, since a is
a linear combination of b and r. Thus a common divisor of b and r is also a common
divisor of a and b. Similarly, since r = a − qb, a common divisor of a and b also
divides r, so it is a common divisor of b and r. Thus a, b and b, r have the same set
of common divisors, and in particular the same greatest common divisor.

With this lemma in our toolbelt, Euclid’s algorithm is easy to describe. To find
gcd(a, b), use the division algorithm (Theorem 4.1.1) to represent a = qb + r, where
0 ≤ r < b. (Remember that we are assuming that a > b > 0.) If r = 0 then b|a and
gcd(a, b) = b. Otherwise gcd(a, b) = gcd(b, r) and b > r > 0. We can thus repeat the
above procedure recursively with the pair b, r. Every recursive call strictly reduces
both numbers in the pair, so after at most b steps the algorithm will terminate with
a valid greatest common divisor of a and b. You will formally prove the correctness
of the algorithm in the homework.

4.4 Greatest common divisors and linear combi-

nations

We have seen that a common divisor of a and b divides any linear combination of a
and b. Now we will prove a surprising property known as Bezout’s identity that shows
that the greatest common divisor of a and b is itself a linear combination of a and b.

Theorem 4.4.1. For two integers a and b that are not both 0, gcd(a, b) is a linear
combination of a and b.
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Proof. As above, we can concentrate on the case a > b > 0. The proof proceeds by
strong induction on the value of a. In the base case, a = 2, b = 1, and gcd(a, b) =
1 = 0 · a + 1 · b. Assume that the theorem holds for all pairs a, b with 0 < b < a ≤ k.
Consider a pair a′, b′ with 0 < b′ < a′ = k + 1. If b′|a′ then gcd(a′, b′) = b′ and the
theorem trivially holds. Otherwise use the division algorithm to express a′ = qb′ + r,
where 0 < r < b′. By the induction hypothesis, there exist coefficients u and v, such
that gcd(b′, r) = ub′ + vr. Lemma 4.3.1 shows that gcd(a′, b′) = gcd(b′, r), therefore
gcd(a′, b′) = ub′ + vr = ub′ + v(a′− qb′) = va′ + (u− vq)b′. This shows that gcd(a′, b′)
is a linear combination of a′ and b′ and completes the proof by induction.

Bezout’s identity implies that the set of linear combinations of a and b is the same
as the set of multiples of their greatest common divisor (!):

Corollary 4.4.2. An integer z is a linear combination of a and b if and only if it is
a multiple of gcd(a, b). In particular, gcd(a, b) is the least positive linear combination
of a and b.

Proof. By Theorem 4.2.1(c), since gcd(a, b) divides both a and b, it divides any linear
combination z of a and b, and thus z is a multiple of gcd(a, b). On the other hand, we
know by Bezout’s identity that there are coefficients u and v, such that gcd(a, b) =
ua + vb, so if z = c · gcd(a, b), then z = c(ua + vb) = (cu)a + (cu)v.
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